首页 > 论文 > 其它学科 > 神经网络怎么回归,神经网络非线性回归怎么做

神经网络怎么回归,神经网络非线性回归怎么做

来源:整理 时间:2023-05-27 01:55:52 编辑:八论文 手机版

本文目录一览

1,神经网络非线性回归怎么做

给你一个例子来说明如何用神经网络非线性回归。如,用神经网络拟合函数 y=0.12*exp(-0.23*x)+0.54*exp(-0.17*x)*sin(1.23*x)执行代码如下:图1为未经过训练的曲线;图2为经过训练后的曲线仿真误差:MSE = 9.5322e-07

神经网络非线性回归怎么做

2,如何用神经网络实现连续型变量的回归预测

神经网络最开始是机器学习的一种模型,但其训练的时间和其他几种模型相比不占优势,且结果也不尽人意,所以一直没有被广泛使用。但随着数学的深入研究以及计算机硬件质量的提高,尤其是GPU的出现,给深度学习的广泛应用提供了基础。GPU最初是为了给游戏玩家带来高质量的视觉体验,由于其处理矩阵运算的能力特别优秀,也被用于深度学习中模型的训练,以往数十天才能训练好的模型在GPU上训练几天就可以训练好,大大减少了深度学习的训练时间,因而深度学习的应用越来越多。神经网络作为深度学习最主要的模型,人工神经网络ANN是最基础的神经网络结构,其工作原理很像人类大脑中的神经。神经元是ANN的工作单元,每个神经元含有权重和偏置,神经元将上一层神经元传递过来的值通过权重和偏置的运算,得到新的结果,将该结果传递给下一层神经元,通过不断的传递,最终获得输出结果。要想用神经网络实现连续型变量的回归预测,需要将该N维变量的数据作为输入,中间再设置隐藏层和每一层的神经元个数,至于隐藏层的层数则需要多次训练才能得出较准确的层数。而最后输出层的值和实际变量的值会有误差,神经网络会通过不断地训练,更改权重和偏置的值来使误差尽可能的小,当误差小到一定程度,该神经网络的回归预测就算成功了。通常使用Python来搭建神经网络,Python自带深度学习的一些库,在进行回归预测时,我们只需用调用函数,设定几个参数,如隐藏层层数和神经元个数等,剩下的就是等模型自行训练,最终便能完成回归预测,非常的方便。

如何用神经网络实现连续型变量的回归预测

3,求助神经网络做非线性回归问题

样本变量不需要那么多,因为神经网络的信息存储能力有限,过多的样本会造成一些有用的信息被丢弃。如果样本数量过多,应增加隐层节点数或隐层数目,才能增强学习能力。一、隐层数一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增加隐层数更容易实现。对于没有隐层的神经网络模型,实际上就是一个线性或非线性(取决于输出层采用线性或非线性转换函数型式)回归模型。因此,一般认为,应将不含隐层的网络模型归入回归分析中,技术已很成熟,没有必要在神经网络理论中再讨论之。二、隐层节点数在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。

求助神经网络做非线性回归问题

文章TAG:神经网络怎么回归神经神经网络网络

最近更新