首页 > 论文设计 > 期刊会议 > 教育改革怎么建立数学模型,如何在小学数学课堂中构建模型思想

教育改革怎么建立数学模型,如何在小学数学课堂中构建模型思想

来源:整理 时间:2023-02-09 10:00:17 编辑:八论文 手机版

本文目录一览

1,如何在小学数学课堂中构建模型思想

一、首先是要使学生加强对教科书上所学的模型的理解。老师应善于引导学生去推导、验证这些基本的模型。学生认清模型的背景、实质,自然而然能够加强对它的理解。 二、应让学生知道:建立模型是解决问题的重要的、行之有效的手段。也是一个重要的数学思想。让学生有通过建立模型解决问题的意识。 三、要使学生有能力应用模型来解决实际问题。老师应该教学生建立模型解决实际问题的具体方法,通过讲解具体的例题等让学生熟悉建立模型解题的基本思路、方法,并进一步了解数学模型思想。
小学数学课堂教学模式,主要以问题方式,把学习的引入 教学知识,一般是为什么,怎么样,什么做!跟学生多互动!这是我个人认为!

如何在小学数学课堂中构建模型思想

2,在数学教学中怎样建立数学模型

第一、 模型准备 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征.第二、 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步.如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化.第三、 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构.这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天.不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值.第四、模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术.一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重.第五、模型分析 对模型解答进行数学上的分析."横看成岭侧成峰,远近高低各不".能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次.还要记住,不论那种情况都需进行误差分析,数据稳定性分析.

在数学教学中怎样建立数学模型

3,试述数学模型建立的步骤与方法

模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用
第一、 模型准备 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 第二、 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 第三、 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 第四、模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 第五、模型分析 对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不"。能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

试述数学模型建立的步骤与方法

4,数学教学中如何培养学生的建模思想

在新课标实施不断深化的当下,小学数学教学的首要目标便是培养学生的模型思想.数学知识对于小学生而言显得枯燥乏味,为了学生可以对数学知识有更形象化的理解及掌握,从而激发学生对于数学知识的学习热情,提升数学教学的有效率培养学生的模型思想尤为重要.
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。

5,如何进行数学教学改革

一、有效的数学教学活动是数学课堂教学改革的重要目标,也是构建素质 教育数学课堂教学模式的关键性环节。 提高数学教学活动的有效性是数学课堂教 学改革的重要内容。为此,我们必须要通过教学反思,积极地转变教育观念,真正确立起与新课程相适应的体现素质教育精神的教育观念。同时,在具体的教学 实践中,创设有利于有效数学教学活动开展的教学环境,着力探究开展有效数学 教学活动的途径和办法,把课堂教学改革引向深入。 一、关注学生发展是数学新课程的基本理念 义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发 展.因此,教学的有效性虽然表现在不同层次上,但学生是否进步和发展是衡量数 学教学有效性的唯一指标.首先,就发展的内涵而言,指的是知识技能、情感态度与 价值观等多方面得到进步和发展. 通俗地说,教学的有效性是指通过教学活动, 学生在学业上有收获,有提高,有进步。具体表现在:学生在认知上,从不懂到 懂,从少知到多知,从不会到会;在情感上,从不喜欢到喜欢,从不热爱到热爱, 从不感兴趣到感兴趣。课堂教学的有效性特征可以列举很多,但最核 心的一点是看学生是否愿意学、主动学以及怎么学、会不会学。其次,就发展的 方式而言,包含学生的学习活动和教师的教学活动.有效的数学学习活动不能单纯 地依赖模仿与记忆,动手实践自主探索与合作交流是学生学习数学的重要方式.有 效的数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上, 激发学生的学习积极性,向学生提供充分从事数学活动机会,帮助学生在自主探索 和合作交流的过程中真正理解和掌握基本的数学知识与技能、 、数学思想和方法, 获得广泛的数学活动经验,简言之,即教师在数学学习中实现有效组织、 有效引导、 有效合作. 再次,从发展时间上来说,学生的发展有当下发展和终身发展。任何一 个有效教学必定要促进学生当下发展,同时对学生长远发展也会有影响。以前教 学太注重当下发展,实际上教学还要关注学生的未来发展,可持续发展。有效的 课堂教学活动沉淀下来的是一种思维方式和精神。最后,就学生发展的过程而言, 由于学生所处的文化环境、家庭背景和自身思维方式的不同,有效的数学教学活 动中学生的学习活动应当是一个生动活泼、主动的和富有个性的过程.。二、提高教学设计的有效性是提高数学课堂教学有效性的基础 任何有效教学总意味着 想方设法 地让学生在单位时间内获得有效的发展。 为了让学生在单位时间内获得有效发展,教师要在上课前做好备课工作,也就是 有效地进行教学设计。教学设计的有效与否,不仅要从教师的教角度,更要 从学生的学角度出发,要把立足点建立在学生身上,从学生已有知识基础、 生活经验、认知规律和心理特征设计教学,找准教学的起点,突破教学的难点, 捕捉教学的生长点,使教学切合实际。虽然教学设计从形式和方法的层面上来说 是多种多样的,但要提高课堂教学的效果,教学设计的基本原则是不变的,即必 须依据教材特点,确立相应的教学目标,激发学生学习的积极性,实现预期的教 学目标。 新课标要求教师要根据学生的具体情况,对教材再加工,有创造地设计教 学过程 也就是提倡 , 用教材教 新教材是课改理念的文本体现, 。 是一个载体, 需要每一位教师去认真研读、感悟、领会,了解教材的基本精神和编写意图,把 握教材所提供的数学活动的基本线索,分析教材所渗透的数学思想、方法和学生 活动的科学内涵。 用教材不等于拘泥于教材,教师也要根据教学的需要和学 生的实际,大胆对教材进行再加工 再创造 ,实现教材由点向线,由线向面, 由二维向三维的转换,真正做到用实、 、用活、用好教材。教材中有些情境不一 定适合各个地区的孩子。教材中的动物对去过动物园的城里孩子很熟悉,而农村 的孩子则对家禽更了解,教师在教学中应针对学生特点灵活运用。 任何优质的教学设计总是与激发学生的学习积极性密切关联。 学生学习的积 极性源自认知的需要、学习的兴趣和探索的动机。传统的数学教学主要是传授与 接受的关系, 忽视或淡化了学生的情感态度, 使学生厌学、 怕学, 学生学的痛苦, 教师教的辛苦。 让学生在生动具体的情境中学习数学是新课标的一个重要理 念, 这就要求教师在进行教学设计时应充分利用学生的生活经验, 设计生动有趣、 直观形象的数学教学活动,如运用讲故事、做游戏、直观演示、模拟表演等,激 发学生学习的兴趣,让学生在生动具体的情境中理解和认识数学知识。当然,教 师在创设情境时,也应遵循现实性、有意义性和富有挑战性的原则,需明确情境 教学的目的和作用,科学适度地进行情境教学。在教学活动中,要真情关爱每个学生,公平地对待学生,尤其 对于学业成绩不理想的学生,要多激励、多关怀,正确对待他们在知识方面的错 误,帮助他们走出误区,使他们树立起数学学习的自信心,从而主动参与数学教 学活动,实现情商促进智商的目标。 四、提高教学评价的有效性是提高数学课堂教学有效性的保障 评价的目的是全面了解学生的学习状况,激励学生的学习热情,促进学生的 全面发展。评价也是教师反思和改进教学的有力手段。科学、有效的教学评价能 够有力地促进数学教学活动的开展。 对学生在数学教学活动中的学习状况的评 价,教师既要关注学生知识和技能的理解和掌握,更要关注他们情感与态度的形 成与发展;既要关注学生数学学习的结果,更要关注他们参与数学活动的程度、 自信心、合作交流意识以及独立思考的习惯、数学思考的发展水平等方面的变化 与发展。同时,对学生实施评价,要特别关注学生的个性差异。采用鼓励性语言,发挥评价的激励作用,激发学生的学习兴趣,增强学习数 学的自信心,从而以极大的热情主动参与到数学教学活动之中。教师在数学教学 中,应充分发挥教学评价的导向、激励、改进、鉴定和研究功能,以保障课堂教 学的有效性。这样,通过评价过程的不断反 馈和调节,可以使教师随时了解学生达到目标的程度,发现教中所存在的问题。 使教师的教不断改进,学生的学习不断强化和提高。激励功能主要指被评价者通 过评价可以看到自己的成绩和不足,找到或发现成功与失败的原因,激起发扬优 点、 克服缺点、 不断改进教和学, 驱动他们的内部活力, 调动起教和学的积极性。 这是评价是否起到良好的作用的关键。改进功能主要是运用反馈的原因,通过评 价及时获得有关教和学的反馈信息, 判断教学过程是否有效。 好的地方得到强化, 缺点和不足得到纠正,使课堂教学不断完善、改进和提高,更好地实现课堂教学 的目标。从而达到教学的整体优化,达到大面积地提高教学质量的作用。鉴定功 能主要指对教师的教学行为和学生的学习行为及教学的结果进行价值的判断。 通 过评价来比较、区分教师的教学能力和学生的学习能力,获取确定学生水平和教 学有效性的证据,以便制定周密的计划进行指导和培养。另外,评价的结果也可 作为评定等级的证据,为教育管理服务。研究功能评价作为教学研究与实践的一 种工具,通过评价不断地明确为达到一定教学目标所应选择的手段和程序,为教 学研究提供必要的信息。 教学是一门艺术。实施新课程目标要求,以学生的发展为本,设计小学数学 课堂教学,就是要尊重学生、关注学生遵循学生的情感发生和发展的过程, 以学生的认知规律和一般的学习方法为依据,确定教学目标,处理学习材料,选 择教学方法和课堂教学组织形式,调动学生学习积极性,使学生主动学习,学会 合作学习、 探究学习, 从而全面发展学生的个性。

6,怎么建立数学模型

—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.下面给出建模的—般步骤:模型准备 首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料.模型假设 根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏.模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.模型分析 对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等.模型检验 把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.模型应用 应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。应当指出,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班,本书的建模实例就采取了灵活的表述方式.
新的《数学课程标准》指出:义务教育阶段的数学课程不仅要考虑学生自身的特点,更要 遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将数学实际 问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能 力、情感态度与价值观等多方面得到进步与发展。“数学模型”这个概念首次在我国义务教育 课程中出现,在新课标的学习和应用中,有部分教师不明白什么叫数学模型,更不清楚怎样建 立数学模型,下面结合本人的教学实际谈一些体会。 一、什么叫数学模型 所谓数学模型是对于现实世界的某一事物系统,为了一个特定的目的,根据事物系统特有的内 在规律,采用形式化的数学语言或符号,概括的或近似地表达出来的一种数学结构。简单地说 数学模型就是对实际问题的一种数学表述。一切数学概念、公式和算法系统、数学理论体系等 都可以称为数学模型。如数学中的数与式、方程与不等式、函数都是研究数量关系和变化规律 的数学模型。 二、建立数学模型的基本步骤 小学的数学模型教学就是从实际生活原型或提供的实际背景出发,充分运用观察、实验、操作、比较、分析、概括等思维方式,去掉非本质的东西,用数学语言或数学符号表述出数学模型,再运用数学模型解决一些实际问题,其基本步骤是: (一)创设问题情景——建摸准备 数学都来源于生活,一方面数学模型是关于现实世界为某种目的的一个抽象的、简化的数学结 构。另一方面建立数学模型的目的是为了有效地描述自然现象和社会现象,从而解决实际问题 。因此任何一个数学模型的建立都应有具体的显示情景,教师要创造一个学生比较熟悉的或亲 身经历的含有数学问题的现实情景,让学生了解问题的实际背景,搜集处理各种信息,提出数 学问题,为建立数学模型作准备。 (二)、观察、比较、分析、抽象、概括——建立模型 根据建摸对象的特征和建摸的目的,对实际数学问题或现实情景,进行观察、比较、分析、抽象、概括,进行必要的、合理的假设,运用形式化的数学语言表达出数学概念或用数学符号刻 划出一种数学结构。这是建立数学模型的关键阶段,教师应该给学生提供充分的时间,让学生 进行自主、合作、探究,教师给予指导,从而建立数学模型。 (三)解释、应用——模型的应用 建立数学模型的目的是更好的描述自然现象和社会现象,从而帮助人们更好地认识自然、社会,改造自然、社会。通过建立数学模型可以教给学生一些数学思想方法,为将来进一步学习和 将来的社会实践打下坚实的基础。因此对所建立的数学模型进行合理的解释、应用。才能使所 建立的数学模型具有生命力。 三、在教学实践中如何建立数学模型 (一)建立概念模型 概念是思维的基本单位,是其他思维形式的基础,一类事物的特有属性(本质属性或因有属 性)反映在人们的思维中,就形成这类事物的概念。 概念模型的建立首先对大量实际生活或提供的问题实际背景进行研究;其次运用比较、分析、 综合、概括、分类等思想方法,去掉非本质的东西,用数学语言抽象概括概念模型;最后把概 念运用于实际。 如建立质数这个概念: 首先给学生提供问题的实际背景让学生进行探究。 写出1、2、3、4、5、6、7、8、9、10、11、12的约数。 1的约数有(1 ); 2的约数有(1 、 2); 3的约数有(1、 3);4的约数有(1、2、4); 5的约数有(1、5);6的约数有(1、2、3、6); 7的约数有(1、7);8的约数有(1、2、4、8); 9的约数有(1、3、9);10的约数有(1、2、5、10); 11的约数有(1、11);12的约数有(1、2、3、4、6、12)。其次通过分析、比较按照约数多少可以分成三种情况: 有一个约数的是 1 , 有两个约数的是2、3、5、7、11, 有两个以上约数的是4、6、8、9、10、12。 去掉非本质的东西再进行概括并用数学语言进行描述:一个数,如果只有1和它本身两个约数,这样的数叫质数(或素数)。这就建立起了质数这个概念的模型。 最后把质数概念模型运用于实践,解决实际问题。 (二)建立数量关系的模型 建立数量关系模型是解决数学应用题的关键。因为数学应用题是由问题的初始状态(已知条 件)、目标状态和中间状态(算子)构成的。解应用题就是由初始状态运用数学模型达到目标 状态的。 例如;要学生解“一辆汽车3小时行210千米,从甲地到乙地需5小时。甲、乙两地相距多少千 米?”这类应用题,学生头脑中必须要有“速度×时间=路程”这一数学模型,不然解题就无 从下手。 “速度×时间=路程”这一模型是怎样建立? 时 间(小时) 速 度(千米/小时) 路程(千米) 1 40 40 2 40 80 3 40 120 (1)从实际背景中初步建立模型: 从表格中可以得出: 40 × 1 = 40(千米) 40 × 2 = 80(千米) 40 × 3 = 120(千米) 速度 时间 路程 (2)分析、比较、抽象、概括模型: 速度×时间=路程(或用符号进行表示vt=s) (3)运用数学模型解决上面的问题:210÷ 3×5=350(千米) (三)运用上面的方法还可以建立运算的性质、运算方法和几何、函数等数学模型,这里就不一一赘述。 由此可见数学模型的思想在小学数学中运用比较广泛,可以说数学学习的过程就是一个建立数 学模型的过程,因此在小学学习中掌握建立数学模型的思想、方法是非常必yao

7,建立数学模型流程

1)建模准备数学建模是一项创新活动,它所面临的课题是人们在生产和科研中为了使认识和实践进一步发展必须解决的问题。“什么是问题?问题就是事物的矛盾,哪里有没解决的矛盾,哪里就有问题”。因此发现课题的过程就是分析矛盾的过程贯穿生产和科技中的根本矛盾是认识和实践的矛盾,我们分析这些矛盾,从中发现尚未解决的矛盾,就是找到了需要解决的实际问题,如果这些实际问题需要给出定量的分析和解答,那么就可以把这些实际问题确立为数学建模的课题,建模准备就是要了解问题的实际背景,明确建模的目的,掌握对象的各种信息,弄清实际对象的特征,情况明才能方法对。(2)建模假设作为课题的原型都是复杂的、具体的,是质和量、现象和本质、偶然和必然的统一体,这样的原型,如果不经过抽象和简化,人们对其认识是困难的,也无法准确把握它的本质属性。建模假设就是根据实际对象的特征和建模的目的,在掌握必要资料的基础上,对原型进行抽象、简化,把那些反映问题本质属性的形态、量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件,并且用精确的语言作出假设,是建模过程关键的一步。对原型的抽象、简化不是无条件的,一定要善于辨别问题的主要方面和次要方面,果断地抓住主要因素,抛弃次要因素,尽量将问题均匀化、线性化,并且要按照假设的合理性原则进行,假设合理性原则有以下几点:①目的性原则:从原型中抽象出与建模目的有关的因素,简化掉那些与建模目的无关的或关系不大的因素。②简明性原则:所给出的假设条件要简单、准确,有利于构造模型。③真实性原则:假设条件要符合情理,简化带来的误差应满足实际问题所能允许的误差范围。④全面性原则:在对事物原型本身作出假设的同时,还要给出原型所处的环境条件。(3)模型建立在建模假设的基础上,进一步分析建模假设的各条件首先区分哪些是常量,哪些是变量,哪些是已知量,哪些是未知量;然后查明各种量所处的地位、作用和它们之间的关系,建立各个量之间的等式或不等式关系,列出表格、画出图形或确定其他数学结构,选择恰当的数学工具和构造模型的方法对其进行表征,构造出刻画实际问题的数学模型。在构造模型时究竟采用什么数学工具,要根据问题的特征、建模的目的要求以及建模者的数学特长而定 可以这样讲,数学的任一分支在构造模型时都可能用到,而同一实际问题也可以构造出不同的数学模型,一般地讲,在能够达到预期目的的前提下,所用的数学工具越简单越好。在构造模型时究竟采用什么方法构造模型,要根据实际问题的性质和建模假设所给出的建模信息而定,就以系统论中提出的机理分析法和系统辨识法来说,它们是构造数学模型的两种基本方法。机理分析法是在对事物内在机理分析的基础上,利用建模假设所给出的建模信息或前提条件来构造模型;系统辨识法是对系统内在机理一无所知的情况下利用建模假设或实际对系统的测试数据所给出的事物系统的输入、输出信息来构造模型。随着计算机科学的发展,计算机模拟有力地促进了数学建模的发展,也成为一种构造模型的基本方法,这些构模方法各有其优点和缺点,在构造模型时,可以同时采用,以取长补短,达到建模的目的。(4)模型求解构造数学模型之后,再根据已知条件和数据分析模型的特征和结构特点,设计或选择求解模型的数学方法和算法,这其中包括解方程、画图形、证明定理、逻辑运算以及稳定性讨论,特别是编写计算机程序或运用与算法相适应的软件包,并借助计算机完成对模型的求解。(5)模型分析根据建模的目的要求,对模型求解的数字结果,或进行变量之间的依赖关系分析,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等。通过分析,如果不符合要求,就修改或增减建模假设条件,重新建模,直到符合要求;通过分析如果符合要求,还可以对模型进行评价、预测、优化等。(6)模型检验模型分析符合要求之后,还必须回到客观实际中去对模型进行检验,用实际现象、数据等检验模型的合理性和适用性,看它是否符合客观实际,若不符合,就修改或增减假设条件,重新建模,循环往复,不断完善,直到获得满意结果 目前计算机技术已为我们进行模型分析、模型检验提供了先进的手段,充分利用这一手段,可以节约大量的时间、人力和物力。(7)模型应用模型应用是数学建模的宗旨,也是对模型的最客观、最公正的检验 因此,一个成功的数学模型,必须根据建模的目的,将其用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的特殊作用。以上介绍的数学建模基本步骤应该根据具体问题灵活掌握,或交叉进行,或平行进行,不拘一格地进行数学建模则有利于建模者发挥自己的才能。 关于软件有matlab lindo 等
新的《数学课程标准》指出:义务教育阶段的数学课程不仅要考虑学生自身的特点,更要 遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将数学实际 问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能 力、情感态度与价值观等多方面得到进步与发展。“数学模型”这个概念首次在我国义务教育 课程中出现,在新课标的学习和应用中,有部分教师不明白什么叫数学模型,更不清楚怎样建 立数学模型,下面结合本人的教学实际谈一些体会。 一、什么叫数学模型 所谓数学模型是对于现实世界的某一事物系统,为了一个特定的目的,根据事物系统特有的内 在规律,采用形式化的数学语言或符号,概括的或近似地表达出来的一种数学结构。简单地说 数学模型就是对实际问题的一种数学表述。一切数学概念、公式和算法系统、数学理论体系等 都可以称为数学模型。如数学中的数与式、方程与不等式、函数都是研究数量关系和变化规律 的数学模型。 二、建立数学模型的基本步骤 小学的数学模型教学就是从实际生活原型或提供的实际背景出发,充分运用观察、实验、操作、比较、分析、概括等思维方式,去掉非本质的东西,用数学语言或数学符号表述出数学模型,再运用数学模型解决一些实际问题,其基本步骤是: (一)创设问题情景——建摸准备 数学都来源于生活,一方面数学模型是关于现实世界为某种目的的一个抽象的、简化的数学结 构。另一方面建立数学模型的目的是为了有效地描述自然现象和社会现象,从而解决实际问题 。因此任何一个数学模型的建立都应有具体的显示情景,教师要创造一个学生比较熟悉的或亲 身经历的含有数学问题的现实情景,让学生了解问题的实际背景,搜集处理各种信息,提出数 学问题,为建立数学模型作准备。 (二)、观察、比较、分析、抽象、概括——建立模型 根据建摸对象的特征和建摸的目的,对实际数学问题或现实情景,进行观察、比较、分析、抽象、概括,进行必要的、合理的假设,运用形式化的数学语言表达出数学概念或用数学符号刻 划出一种数学结构。这是建立数学模型的关键阶段,教师应该给学生提供充分的时间,让学生 进行自主、合作、探究,教师给予指导,从而建立数学模型。 (三)解释、应用——模型的应用 建立数学模型的目的是更好的描述自然现象和社会现象,从而帮助人们更好地认识自然、社会,改造自然、社会。通过建立数学模型可以教给学生一些数学思想方法,为将来进一步学习和 将来的社会实践打下坚实的基础。因此对所建立的数学模型进行合理的解释、应用。才能使所 建立的数学模型具有生命力。 三、在教学实践中如何建立数学模型 (一)建立概念模型 概念是思维的基本单位,是其他思维形式的基础,一类事物的特有属性(本质属性或因有属 性)反映在人们的思维中,就形成这类事物的概念。 概念模型的建立首先对大量实际生活或提供的问题实际背景进行研究;其次运用比较、分析、 综合、概括、分类等思想方法,去掉非本质的东西,用数学语言抽象概括概念模型;最后把概 念运用于实际。 如建立质数这个概念: 首先给学生提供问题的实际背景让学生进行探究。 写出1、2、3、4、5、6、7、8、9、10、11、12的约数。 1的约数有(1 ); 2的约数有(1 、 2); 3的约数有(1、 3);4的约数有(1、2、4); 5的约数有(1、5);6的约数有(1、2、3、6); 7的约数有(1、7);8的约数有(1、2、4、8); 9的约数有(1、3、9);10的约数有(1、2、5、10); 11的约数有(1、11);12的约数有(1、2、3、4、6、12)。其次通过分析、比较按照约数多少可以分成三种情况: 有一个约数的是 1 , 有两个约数的是2、3、5、7、11, 有两个以上约数的是4、6、8、9、10、12。 去掉非本质的东西再进行概括并用数学语言进行描述:一个数,如果只有1和它本身两个约数,这样的数叫质数(或素数)。这就建立起了质数这个概念的模型。 最后把质数概念模型运用于实践,解决实际问题。 (二)建立数量关系的模型 建立数量关系模型是解决数学应用题的关键。因为数学应用题是由问题的初始状态(已知条 件)、目标状态和中间状态(算子)构成的。解应用题就是由初始状态运用数学模型达到目标 状态的。 例如;要学生解“一辆汽车3小时行210千米,从甲地到乙地需5小时。甲、乙两地相距多少千 米?”这类应用题,学生头脑中必须要有“速度×时间=路程”这一数学模型,不然解题就无 从下手。 “速度×时间=路程”这一模型是怎样建立? 时 间(小时) 速 度(千米/小时) 路程(千米) 1 40 40 2 40 80 3 40 120 (1)从实际背景中初步建立模型: 从表格中可以得出: 40 × 1 = 40(千米) 40 × 2 = 80(千米) 40 × 3 = 120(千米) 速度 时间 路程 (2)分析、比较、抽象、概括模型: 速度×时间=路程(或用符号进行表示vt=s) (3)运用数学模型解决上面的问题:210÷ 3×5=350(千米) (三)运用上面的方法还可以建立运算的性质、运算方法和几何、函数等数学模型,这里就不一一赘述。 由此可见数学模型的思想在小学数学中运用比较广泛,可以说数学学习的过程就是一个建立数 学模型的过程,因此在小学学习中掌握建立数学模型的思想、方法是非常必yao
文章TAG:教育改革怎么建立数学模型教育教育改革改革

最近更新