首页 > 作文 > 初中作文 > 初二数学论文怎么写,初二数学小论文怎么写

初二数学论文怎么写,初二数学小论文怎么写

来源:整理 时间:2023-01-18 04:58:45 编辑:八论文 手机版

本文目录一览

1,初二数学小论文怎么写

应该来说,大学以下都没有论文一说,但是实在要写,我想也是可以的,就是把一个问题怎么样解决写下来,可以参考大学理工科的论文,格式比较好的

初二数学小论文怎么写

2,初二勾股定理的数学论文应该怎么写

最近我们学习了“勾股定理”。它是初等几何中的一个基本定理,是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只有简单的一句话,但它却有着十分悠久的历史,尤其是它那“形数结合”、“形数统一”的思想方法,启迪和促进了我国乃至世界的数学发展。 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯要早得多。在我国最早的数学著作《周髀算经》的开头,有一段周公与商高的“数学对话”: 周公问:“听说您对数学非常精通,我想请教一下:我们一没有登天的云梯,二没有丈量整个地球的尺子,那么我们怎样才能得到关于天地之间的数据呢?” 商高回答说:“我们已经在实践中总结出了一些了解天地的好方法。如当直角三角形(矩)的一条直角边(勾)等于3,另一条直角边(股)等于4的时候,那么它的斜边(弦)就必定是5。这就叫做勾股弦定理,是在大禹治水的时候就总结出来的一个定理。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,这就比毕达哥拉斯要早五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。 我国古代数学家们不仅很早就发现并应用了勾股定理,而且很早就尝试对勾股定理作出理论性的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。他创制了一幅“勾股圆方图”,用形数结合的方法,对勾股定理进行了详细的证明。在“勾股圆方图”中,以弦为边长得到正方形ABDE,它是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间那个小正方形的边长为b-a,则面积为(b-a)2。于是便有了如下的式子:a2+b2=c2。《九章算术》中的《勾股章》,对勾股定理的表述是:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2) 我国古代数学家对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数结合”、“形数统一”的思想方法,更具有科学创新的重大意义。正如我国当代数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。” 我们今天学习勾股定理,不但要学会利用它进行计算、证明和作图,更要学习和了解它的历史,了解其中体现出来的“形数结合”、“形数统一”的思想方法,这对我们今后的数学发展和科学创新都将具有十分重大的意义。

初二勾股定理的数学论文应该怎么写

3,初中数学小论文怎么写提供范文啊

初中数学总复习是完成初中三年数学教学任务之后的一个系统、完善、深化所学内容的关键环节。重视并认真完成这个阶段的教学任务,不仅有利于升学学生巩固、消化、归纳数学基础知识,提高分析、解决问题的能力,而且有利于就业学生的实际运用。同时是对学习基础较差学生达到查缺补漏,掌握教材内容的再学习。因此有计划、有步骤地安排实施总复习教学是初中数学教师的基本功之一。 一、紧扣大纲,精心编制复习计划 初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的。因此,必须依据大纲规定的内容和系统化的知识要点,精心编制复习计划。计划的编写必须切合学生实际。可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,编制一份渗透主要知识点的测试题,让学生在规定时间内独立完成。然后按测试中出现的学生难以理解、遗忘率较高且易混易错的内容,确定计划的重点。复习计划制定后,要做好复习课例题的选择、练习题配套作业筛眩教师制定的复习计划要交给学生,并要求学生再按自己的学习实际制定具体复习规划,确定自己的奋进目标。 二、追本求源,系统掌握基础知识总 复习开始的第一阶段,首先必须强调学生系统掌握课本上的基础知识和基本技能,过好课本关。对学生提出明确的要求:①对基本概念、法则、公式、定理不仅要正确叙述,而且要灵活应用;②对课本后练习题必须逐题过关;③每章后的复习题带有综合性,要求多数学生必须独立完成,少数困难学生可在老师的指导下完成。 三、系统整理,提高复习效率 总复习的第二阶段,要特别体现教师的主导作用。对初中数学知识加以系统整理,依据基础知识的相互联系及相互转化关系,梳理归类,分块整理,重新组织,变为系统的条理化的知识点。例如,初三代数可分为函数的定义、正反比例函数、一次函数;一元二次方程、二次函数、二次不等式;统计初步三大部分。几何分为4块13线:第一块为以解直角三角形为主体的1条线。第二块相似形分为3条线:(1)成比例线段;(2)相似三角形的判定与性质。(3)相似多边形的判定与性质;第三块圆,包含7条线:(4)圆的性质;(5)直线与圆;(6)圆与圆;(7)角与圆;(8)三角形与圆;(9)四边形与圆;(10)多边形与圆。第四块是作图题,有2条线:(11)作圆及作圆的内外公切线等;(12)点的轨迹。这种归纳总结对程度差别不大、素质较好的班级可在教师的指导下师生共同去作,即由学生“画龙”,教师“点睛”。中等及其以下班级由教师归类,对比讲解,分块练习与综合练习交叉进行,使学生真正掌握初中数学教材内容。 四、集中练习,争取最佳效果 梳理分块,把握教材内容之后,即开始第三阶段的综合复习。这个阶段,除了重视课本中的重点章节之外,主要以反复练习为主,充分发挥学生的主体作用。通常以章节综合习题和系统知识为骨干的综合练习题为主,适当加大模拟题的份量。对教师来说,这时主要任务是精选习题,精心批改学生完成的练习题,及时讲评,从中查漏补缺,巩固复习成效,达到自我完善的目的。精选综合练习题要注意两个问题:第一,选择的习题要有目的性、典型性和规律性。如,函数的取值范围可选择如下一组例题: (2)y=13-2x (3)y=3x+2x-1 (4)y=1x+1-1 (5)y=x+2x-2第二,习题要有启发性、灵活性和综合性。如,角平分线定理的证明及应用,圆的证明题中圆周角、圆心角、弦心角、圆幂定理、射影定理等的应用都是综合性强且是重点应掌握的题目,都要抓住不放,抓出成效。

初中数学小论文怎么写提供范文啊

4,初中数学论文怎么写只要写法

有的同学看到这个题目,会感到特别新鲜和好奇,会问,数学也写日记?什么是“数学日记”,该写些什么? 什么是数学日记 “数学日记”就是学生以日记的形式,记述自己在数学学习和应用过程中的感受与体会。数学日记不仅真实地反映了学生的学习情况,更重要的是它相对客观地再现了教与学的互动情况。通过日记的方式,学生可以对自己所学的数学内容进行总结,写出自己的收获与困惑,还能激发他们用“数学日记”去观察生活。 数学日记应该写什么 数学日记要记的是自己对数学的发现、思考、感受以及采用的数学方法等,数学日记记录的东西不局限在某个方面,它的材料和内容是无拘无束的,可以是课上的、课下的、生活中的、听来的、看到的、实践的…… 1.写数学认知 学生在课堂上学到了什么,理解了什么,掌握了什么,还有哪些地方不清楚,都可以写。通过写,有利于学生温故知新,加深对数学知识尤其是对数学概念的理解和掌握,督促学生有目的地对知识点进行整理,以实现新知的内化。 例如一位同学在学完认识“米、厘米”后写的一则数学日记:“今天我们认识了米和厘米,回家后,我用米尺一量,才知道我的身高只有121厘米,我爸爸的身高179厘米,爸爸比我高58厘米,我的脚长19厘米,爸爸的脚长26厘米,我比爸爸的脚短7厘米。” 以前在教学这一内容时,学生对厘米的长度很模糊,通过实践记数学日记,学生不仅对厘米长度有了进一步的认识,而且对“比……多……,比……少……”的数学题得到了实践。 2.写数学活动 学生在写数学日记时,可以记录课堂上是怎样思考的,是怎样动手操作的;在学习的过程中,小组讨论交流时,是怎样说的,怎样想的,同学怎样说的,老师怎样说的;在进行小组合作学习时,自己是怎样做的,同学是怎样做的,老师是怎样指导的。这样,写数学活动的过程,就是自己向同学学习的过程,也是自己对知识总结的一个过程。 3.写数学思考 写数学思考,是学生写数学日记的主要内容,可以写反思:如学习态度、学习方法、学习习惯、学习兴趣,还可以写回答问题的方式,对老师的建议,等等。这样教师和学生之间又多了一条交流的绿色通道,从而架起了师生之间情感沟通的桥梁,能及时了解学生的学习情况,对知识的掌握、理解程度,以及学生对讲课方法的建议。 例如:有的学生在数学日记中写到:“老师,你知道吗,最近一段时间我上课老是走神,精力不集中……”有的同学写到:“王老师,你讲得太慢了,有时也太啰唆了。”还有的同学在日记中写到:“我们好想在课堂上多做一些数学游戏,能在玩中学,学中玩,效果会更好些。” 由此可以看出,数学日记就如同一面镜子,时刻提醒教师不断了解学生,改进教法。 4.写数学应用 经常指导学生写应用型的数学日记,会极大地开阔学生的知识视野,拓展学生的数学能力,提高学生解决日常生活中实际问题的能力。 再看这位同学写的:“今天下午放学后,妈妈带我到超市买东西,我们买了4袋巧克力,每袋l元8角5分;买了4个面包,每个面包1元1角5分;还买了一袋面粉,23元6角,我是这样计算的,1袋巧克力和1个面包加在一起正好是3元,再乘以数量4,共12元,再加一袋面粉共35元6角,与发票上的一致。” 从这则日记我们发现,学生在用数学的眼光从生活中捕捉数学问题,探索数学规律,主动地运用数学知识“简便运算”来解决生活中的实际问题,学生通过写数学日记,不仅理解了数学在生活中的应用,还学会了从数学的角度去观察与体验生活。 总之,写数学日记是一种重要的学习方式,数学日记不仅记录着孩子们瞬间的心灵闪动,更在他们内心深处留下了数学的烙印,能使学生更广泛地接触生活,更细致地观察生活,有效地实现数学生活化,生活数学化。实现了学科间的整合,缩短了教师和学生之间的心灵距离。让孩子拿起笔来写数学日记吧,“数学日记”可以给他们一双数学的眼睛,体验数学生活,享受数学思维带来的丰厚回报。

5,初二数学小论文范文

在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。
我们学校也让写了,我刚从网上找到一篇关于“勾股定理”的,给你参考! 1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形矩得到的一条直角边勾等于3,另一条直角边股等于4的时候,那么它的斜边弦就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理:  如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方; 即直角三角形两直角边的平方和等于斜边的平方。  如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)来源:     毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
文章TAG:初二数学论文怎么写初二数学论文

最近更新

相关文章