首页 > 论文 > 医学论文 > 论文怎么建模型,怎么运用模型写论文

论文怎么建模型,怎么运用模型写论文

来源:整理 时间:2022-12-16 03:16:55 编辑:八论文 手机版

1,怎么运用模型写论文

根据自己所知道或者自己的实例当做素材,运用模型论文的框架。将自己的素材填充到框架中。

怎么运用模型写论文

2,数学建模竞赛论文基本步骤是什么

基本步骤:答卷的基本内容1、问题的叙述,背景的分析等 。2、模型的假设,符号说明(列表)。3、 模型的建立:问题分析,引用的数学命题,公式推导,模型Ⅰ,模型Ⅱ 等。。4、 模型的求解:计算方法设计或选择,计算步骤(框图),所采用的软件名称等。5、模型的结果:误差分析,模型检验。6、模型评价:特色,优缺点,改进方法,推广。7、 参考文献。8、 附录:图表、程序等。
基本步骤:答卷的基本内容1、问题的叙述,背景的分析等 。2、模型的假设,符号说明(列表)。3、 模型的建立:问题分析,引用的数学命题,公式推导,模型Ⅰ,模型Ⅱ 等。。4、 模型的求解:计算方法设计或选择,计算步骤(框图),所采用的软件名称等。5、模型的结果:误差分析,模型检验。6、模型评价:特色,优缺点,改进方法,推广。7、 参考文献。8、 附录:图表、程序等。

数学建模竞赛论文基本步骤是什么

3,硕士论文中的模型可以是自己建立吗意思是不搞仿真

嗯,可以的 (一)作好准备--收集资料 选题确定之后,论文有了中心思想,在写作上迈出了关键的一步。但是,要写好一篇论文,作者还必须占有丰富、准确、全面、典型、生动具体的材料。从中研究提炼出自己的观点,并用具有说服力的题材(论据)来证明自己的观点。这些材料必须是有根有据的,而不是主观臆断的。它们或是通过自己亲身实践研究的出的,或是他人以前研究总结的可靠成果。因此,资料的收集对论文的写作有着举足轻重的作用。 收集资料的途径有以下几种。 1、阅读有关的理论书籍。 参加教育教学研究,撰写论文,必须掌握必要的教育教学理论和科研方法。对于教育、教学理论的一些基本概念要理解掌握。 2、调查研究,收集有关的论据。论文的中心思想确定后,作者明确了所要研究的对象和内容,就要着手拟订调查提纲。列出调查研究从何入手,了解哪些方面的情况,每个方面包括哪些项目和具体内容,需要哪些典型的材料和数据,取材的数量和质量上的要求应达到的深度和广度,等等。 3、查阅有关的文献资料 作者不仅要学习教育、教学理论,对于与教育、教学相关的社会科学知识也要有所涉猎。因此,要注意多阅读教育书刊、报纸,收集有关研究信息,吸收他人的研究成果,开阔自己的思路,完善自己的设想。 (二)安排好论文的结构 论文的一般结构是:提出论点,进行论证,概括结论。 1、题目--体现内容。论文的题目是论文的眼睛,也是论文总体内容的体现。 一个好的题目能吸引读者阅读文中的内容,起到很好的宣传作用。好的题目应是用精辟的语言来阐明作者打算探索和解决的问题,要明确、精练、易懂,要能正确地表达论文的中心内容,恰当地反映此研究的范围的所达到的深度。同时要使内行人看得明白,外行人也能有所理解。例如,”浅谈应用题教学中学习的激发”和”问题意识与数学教学”。前一个题目明确的反映了论文的中心内容和研究范围,即在应用题教学中如何激发学生的学习兴趣;后一个题目明确而精练,读者一看便知研究的中心内容,即在数学教学中如何培养学生的问题意识。 2、绪论--提出观点。对本论内容加以简要介绍,把中心论点准确地概括出来。绪论要求写得精炼、明确,字数不宜多。论文的中心思想确定后,作者明确了所要研究的对象和内容,就要着手拟订调查提纲。列出调查研究从何入手,了解哪些方面的情况,每个方面包括哪些项目和具体内容,需要哪些典型的材料和数据,取材的数量和质量上的要求应达到的深度和广度,等等。 3、查阅有关的文献资料 作者不仅要学习教育、教学理论,对于与教育、教学相关的社会科学知识也要有所涉猎。因此,要注意多阅读教育书刊、报纸,收集有关研究信息,吸收他人的研究成果,开阔自己的思路,完善自己的设想。 希望我的留言能给为论文而苦恼的朋友们带来一点点帮助。

硕士论文中的模型可以是自己建立吗意思是不搞仿真

4,数学建模论文

高中数学建模与教学设想 论文关键词:数学建模 数学应用意识 数学建模教学 来源于 http://www.dylw.info/lixue/shuxue/2011/0127/23825.html   论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。   目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。   数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性"; "数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题 望可以帮到您。。

5,数学建模是什么数学建模论文怎么写

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。

6,急求数学建模论文基本步骤

答卷的基本步骤:【参考如下】 一、答卷的基本内容 0. 摘要 1. 问题的叙述,背景的分析等 2. 模型的假设,符号说明(列表) 3. 模型的建立:问题分析,引用的数学命题,公式推导,模型Ⅰ,模型Ⅱ 等 4. 模型的求解:计算方法设计或选择,计算步骤(框图),所采用的软件名称等 5. 模型的结果:误差分析,模型检验…… 6. 模型评价:特色,优缺点,改进方法,推广……. 7. 参考文献 8. 附录:图表、程序等 二、对基本内容的一些说明 0. 摘要 摘要在整篇论文评阅中占有重要权重,务必认真书写(篇幅不能超过一页)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。摘要写得不好,论点不明,条理不清,评委不再阅读正文,论文即遭被淘汰。 摘要是全文的精华,摘要应当点明: (1) 模型的数学归类(数学上属于什么类型,如动态规划,微分方程稳定性等) (2) 建模的思想(思路) (3) 算法思想(求解思路) (4) 模型特色(模型优缺点,算法特点,结果检验,灵敏度分析,模型检验等) (5) 主要结果(数值结果,结论)(回答题目所问的全部“问题”) 注意表述一定要准确、简明、通顺、工整,务必认真校对。 1. 问题重述 把原问题简单重述一遍,但不是照搬,而是从数学的角度重新表述。 2. 模型假设 根据评卷原则,基本假设的合理性占重要比重。 应当根据题目中的条件和要求作出合理假设,假设要切合题意,关键性假设不能缺。 3. 模型的建立 (1)数学建模是用数学方法解决问题,首先要有数学模型:数学公式、方程、方案等;要求完整,正确,简明 (2)模型要实用,有效,以解决问题有效为原则,不追求数学上的高(级)、难(度大)。能用初等方法解决的、就不用高级方法;能用简单方法解决的,就不用复杂方法;能用被多数人理解的方法,就不用只有少数人能理解的方法。 (3)鼓励创新,但要切合实际。数模创新可体现在模型中(好思想、好方法、好策略等);模型求解中(好算法、好步骤、好程序);结果表示中(醒目、图表、分析、检验等);模型推广中。 4. 模型求解 (1) 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。 (2) 需要说明算法的原理、依据、步骤。若用现有软件,要说明理由,软件名称。 (3) 计算过程,中间结果可要可不要的,不必列出。 (4) 设法算出合理的数值结果。 5.模型的结果 (1) 最终数值结果的正确性或合理性是第一位的; (2) 对数值结果或模拟结果须进行必要的检验。结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进; (3) 题目中要求回答的问题,数值结果,结论,必须一一列出; (4) 考虑是否需要列出多组数据,对数据进行比较、分析,为各种方案的提出提供依据; (5) 结果的表示要集中,醒目,直观,便于比较分析 (6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。 6.模型评价 (1)说明特色,优点突出,缺点不回避。 (2)改变原题要求,重新建模可在此做。 (3)推广或改进方向时,要合理、可行,不要玩弄新数学术语。 7.参考文献 按规定列出。 8.附录 (1)主要结果数据,应在正文中列出。 (2)数据、表格,可在此列出,但不要错,错的宁可不列。 三、写答卷前的思考和工作规划 事先要有一个统筹安排: (1) 答卷需要回答哪几个问题——建模需要解决哪几个问题; (2) 问题以怎样的方式回答——结果以怎样的形式表示; (3) 每个问题要列出哪些关键数据——建模要计算哪些关键数据; (4) 每个量,列出一组还是多组数——要计算一组还是多组数…… 列出条目,一气呵成。切不可想到那里,写道那里,杂乱无序。 如何写好数学建模竞赛论文(培训资料) http://www.saicai.com/bbs/viewthread.php?tid=3107&extra=page%3D1 参加数学建模竞赛的十大秘诀 http://www.saicai.com/bbs/viewthread.php?tid=3676&extra=page%3D1 怎样写好数学建模竞赛答卷 http://www.saicai.com/bbs/viewthread.php?tid=3519&extra=page%3D2
http://wenwen.soso.com/z/q65045521.htm?rq=128789986&ri=2&uid=291758732&ch=w.xg.dllyjj

7,数学建模论文怎么写

如何撰写数学建模论文--兼谈数学建模竞赛答卷要求当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模竞赛时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。首先要明确撰写论文的目的。数学建模通常是根据实际需要而提出的,这就要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(或竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。(一) 问题提出和假设的合理性在撰写论文时,应该把读者(即评阅人)想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“模型的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:(1) 论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。(2) 所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。(3) 假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设,或者由观察所给数据的图象,得到变量的函数形式,也可以参考其他资料由类推得到。对于后者应指出参考文献的相关内容。(二) 模型的建立在作出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程,上下文之间切忌逻辑推理过程中跳跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。 (三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出相应的计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,总结得出一些对实践有所帮助的结论。有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用注记的形式列出。定理和命题必须写清结论成立的条件。(四) 模型的讨论对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。除正文外,论文和竞赛答卷都要求写出摘要(一般为200至300字)。我们不要忽视摘要的写作,因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明。并把文章用计算机打印出来。
很抱歉我对数学建模不是很熟悉,但曾经旁听过这个公选课。建议您先了解和熟悉这门课程,学习此课程要花费一些精力,数学建模和高等数学知识有着联系,如果您可以利用图书馆的优势借阅到相关专业书籍,打好理论知识基础。人口模型的建立需要您了解和深入社会,最好以高效和大量(之所以大量,因为人口问题是个庞大和复杂的社会问题,需要我们付出相应代价的实践才能深入话题,您也可以以小组的形式进行实践)的社会实践获得相对准确的样本数据,再利用数学思维抽象出样本数据的内在属性和联系,最后通过数学模型进行归纳和演绎。您也可以通过网络,中国知网,经济报刊等手段来获取数据或参考资料。谢谢。祝您成功!
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。 在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。(3) 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。(5) 模型分析:对所得的结果进行数学上的分析。(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。(7) 模型应用:应用方式因问题的性质和建模的目的而异。 我还了解到学习数学建模的意义是: 1、培养创新意识和创造能力 2、训练快速获取信息和资料的能力 3、锻炼快速了解和掌握新知识的技能 4、培养团队合作意识和团队合作精神 5、增强写作技能和排版技术 6、荣获国家级奖励有利于保送研究生 7、荣获国际级奖励有利于申请出国留学 在学习了数学建模后,我有了很多体会,我认为数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段。特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧!通过数学建模,我学会了“我们”,培养了“三人同心,其利断金”的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事。 是数学建模让我提高了自己,在今后,我会用数学建模的思想去思考问题。我相信,我会进步更多的!我永远不会忘了我的数学建模课!
文章TAG:论文怎么建模型论文怎么建模

最近更新